objects
Callbacks
🎉 New feature introduced in pyhectiqlab>=2.0.11
🎉
For tensorflow user, you can use the pyhectiqlab.callbacks.KerasCallback
object to push automatically your metrics. It supports the training, validattion and prediction metrics.
Usage
You simply need to create a run and use it to initialize the callback.
from pyhectiqlab import Run
from pyhectiqlab.callbacks import KerasCallback
run = Run(name="Push metrics", project="lab/demo")
callback = KerasCallback(run=run)
# Use it
model.fit(
x_train,
y_train,
callbacks=[callback],
)
The callback supports other parameters for additional control over what you push.
Method
pyhectiqlab.callbacks.KerasCallback(run: pyhectiqlab.Run, level: str = batch, exclude_train_metrics: bool = False, exclude_val_metrics: bool = False, exclude_predict_metrics: bool = False, exclude_metrics: List[str] = [])
A custom callback object for keras models.
Parameters
Property | Type | Default | Description |
---|---|---|---|
run | pyhectiqlab.Run | - | The target run to host the metrics |
level | str | batch | Either 'batch' or 'epoch'. If 'batch', the metrics are pushed on every batch and the stepstamp incremented on every batch. If 'epoch', the metrics are pushed every epoch. |
exclude_train_metrics | bool | False | Set to true to exclude the training metrics. |
exclude_val_metrics | bool | False | Set to true to exclude the validation metrics. |
exclude_predict_metrics | bool | False | Set to true to exclude the prediction metrics. |
exclude_metrics | List[str] | [] | List the metrics to remove from tracking. For validation metrics, add 'val_'. For instance, use `exclude_metrics=['mse', 'val_mse']` to exclude the `mse` metrics in training and validation. |