package reference

pyhectiqlab

Main objects

Utils

Below is a list of methods that do not use the core classes. They can be executed out of import pyhectiqlab. For instance,

import pyhectiqlab
pyhectiqlab.download_run_artifact("1234")

pyhectiqlab

pyhectiqlab.utils.download_run_artifact(artifact_uuid: str, save_path: str = ./)
Download an existing artifact.

Parameters

PropertyTypeDefaultDescription
artifact_uuidstr-Unique artifact id. Available with the web application.
save_pathstr./Save path.
pyhectiqlab.datasets.download_dataset(dataset_name: str, project: str, version: str, save_path: str = ./, overwrite: str = False)
Download an existing dataset without a run context.

Parameters

PropertyTypeDefaultDescription
dataset_namestr-Dataset name
projectstr-Project name
versionstr-Specific version of the dataset. If None, the latest version is fetched.
save_pathstr./Save path.
overwritestrFalseSet to True if you want to download the dataset again even if it is already saved on your machine.
pyhectiqlab.mlmodels.download_mlmodel(mlmodel_name: str, project: str, version: str, save_path: str = ./, overwrite: str = False)
Download an existing mlmodel without a run context.

Parameters

PropertyTypeDefaultDescription
mlmodel_namestr-MLModel name
projectstr-Project name
versionstr-Specific version of the mlmodel. If None, the latest version is fetched.
save_pathstr./Save path.
overwritestrFalseSet to True if you want to download the mlmodel again even if it is already saved on your machine.
pyhectiqlab.callbacks.KerasCallback(run: pyhectiqlab.Run, level: str = batch, exclude_train_metrics: bool = False, exclude_val_metrics: bool = False, exclude_predict_metrics: bool = False, exclude_metrics: List[str] = [])
A custom callback object for keras models.

Parameters

PropertyTypeDefaultDescription
runpyhectiqlab.Run-The target run to host the metrics
levelstrbatchEither 'batch' or 'epoch'. If 'batch', the metrics are pushed on every batch and the stepstamp incremented on every batch. If 'epoch', the metrics are pushed every epoch.
exclude_train_metricsboolFalseSet to true to exclude the training metrics.
exclude_val_metricsboolFalseSet to true to exclude the validation metrics.
exclude_predict_metricsboolFalseSet to true to exclude the prediction metrics.
exclude_metricsList[str][]List the metrics to remove from tracking. For validation metrics, add 'val_'. For instance, use `exclude_metrics=['mse', 'val_mse']` to exclude the `mse` metrics in training and validation.